翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

tight closure : ウィキペディア英語版
tight closure
In mathematics, in the area of commutative algebra, tight closure is an operation defined on ideals in positive characteristic. It was introduced by .
Let R be a commutative noetherian ring containing a field of characteristic p > 0. Hence p is a prime number.
Let I be an ideal of R. The tight closure of I, denoted by I^
*, is another ideal of R containing I. The ideal I^
* is defined as follows.
:z \in I^
* if and only if there exists a c \in R, where c is not contained in any minimal prime ideal of R, such that c z^ \in I^ for all e \gg 0. If R is reduced, then one can instead consider all e > 0.
Here I^ is used to denote the ideal of R generated by the p^e'th powers of elements of I, called the eth Frobenius power of I.
An ideal is called tightly closed if I = I^
*. A ring in which all ideals are tightly closed is called weakly F-regular (for Frobenius regular). A previous major open question in tight closure is whether the operation of tight closure commutes with localization, and so there is the additional notion of F-regular, which says that all ideals of the ring are still tightly closed in localizations of the ring.
found a counterexample to the localization property of tight closure. However, there is still an open question of whether every weakly F-regular ring is F-regular. That is, if every ideal in a ring is tightly closed, is it true that every ideal in every localization of that ring also tightly closed?
==References==

*
*
*

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「tight closure」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.